Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Value Health ; 25(5): 699-708, 2022 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1559519

RESUMEN

OBJECTIVES: Most countries have adopted public activity intervention policies to control the coronavirus disease 2019 (COVID-19) pandemic. Nevertheless, empirical evidence of the effectiveness of different interventions on the containment of the epidemic was inconsistent. METHODS: We retrieved time-series intervention policy data for 145 countries from the Oxford COVID-19 Government Response Tracker from December 31, 2019, to July 1, 2020, which included 8 containment and closure policies. We investigated the association of timeliness, stringency, and duration of intervention with cumulative infections per million population on July 1, 2020. We introduced a novel counterfactual estimator to estimate the effects of these interventions on COVID-19 time-varying reproduction number (Rt). RESULTS: There is some evidence that earlier implementation, longer durations, and more strictness of intervention policies at the early but not middle stage were associated with reduced infections of COVID-19. The counterfactual model proved to have controlled for unobserved time-varying confounders and established a valid causal relationship between policy intervention and Rt reduction. The average intervention effect revealed that all interventions significantly decrease Rt after their implementation. Rt decreased by 30% (22%-41%) in 25 to 32 days after policy intervention. Among the 8 interventions, school closing, workplace closing, and public events cancellation demonstrated the strongest and most consistent evidence of associations. CONCLUSIONS: Our study provides more reliable evidence of the quantitative effects of policy interventions on the COVID-19 epidemic and suggested that stricter public activity interventions should be implemented at the early stage of the epidemic for improved containment.


Asunto(s)
COVID-19 , Gripe Humana , COVID-19/epidemiología , COVID-19/prevención & control , Política de Salud , Humanos , Gripe Humana/epidemiología , Pandemias/prevención & control , Instituciones Académicas
2.
Sci Rep ; 10(1): 21122, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: covidwho-957580

RESUMEN

The current outbreak of coronavirus disease 2019 (COVID-19) has recently been declared as a pandemic and spread over 200 countries and territories. Forecasting the long-term trend of the COVID-19 epidemic can help health authorities determine the transmission characteristics of the virus and take appropriate prevention and control strategies beforehand. Previous studies that solely applied traditional epidemic models or machine learning models were subject to underfitting or overfitting problems. We propose a new model named Dynamic-Susceptible-Exposed-Infective-Quarantined (D-SEIQ), by making appropriate modifications of the Susceptible-Exposed-Infective-Recovered (SEIR) model and integrating machine learning based parameter optimization under epidemiological rational constraints. We used the model to predict the long-term reported cumulative numbers of COVID-19 cases in China from January 27, 2020. We evaluated our model on officially reported confirmed cases from three different regions in China, and the results proved the effectiveness of our model in terms of simulating and predicting the trend of the COVID-19 outbreak. In China-Excluding-Hubei area within 7 days after the first public report, our model successfully and accurately predicted the long trend up to 40 days and the exact date of the outbreak peak. The predicted cumulative number (12,506) by March 10, 2020, was only 3·8% different from the actual number (13,005). The parameters obtained by our model proved the effectiveness of prevention and intervention strategies on epidemic control in China. The prediction results for five other countries suggested the external validity of our model. The integrated approach of epidemic and machine learning models could accurately forecast the long-term trend of the COVID-19 outbreak. The model parameters also provided insights into the analysis of COVID-19 transmission and the effectiveness of interventions in China.


Asunto(s)
COVID-19/epidemiología , Pandemias/estadística & datos numéricos , China , Predicción/métodos , Humanos , Modelos Estadísticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA